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Dipartimento di Georisorse e Territorio, Università degli Studi di Udine, Via Cotonificio 114, 33100 Udine, Italy

Received 24 June 2006; received in revised form 22 November 2006; accepted 22 November 2006

Available online 16 January 2007
Abstract

This paper deals with damage identification in a vibrating beam, either under axial or bending vibration, based on

measurement of damage-induced changes in natural frequencies. It is found that frequency shifts contain information on

certain generalized Fourier coefficients of the stiffness variation caused by the damage. Under the assumptions that the

damaged beam is a perturbation of the undamaged one and the damage belongs to a half of the beam, a reconstruction

procedure based on an iterative algorithm is proposed. The theoretical results are confirmed by a comparison with dynamic

measurements on steel beams with localized damages.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic methods are widely used as a diagnostic tool to detect damage in a structure, see, for example,
Ref. [1]. In most studies, changes in natural frequencies represent the dynamic data. In fact, frequencies can be
measured more easily than can either mode shapes or time responses, and are less affected by experimental
errors.

The approach to damage identification based on frequency measurements is usually of variational type, see
Ref. [2]. A function which measures the distance between a certain number of experimental and analytical
frequency values is minimized via gradient-type methods and, therefore, the stiffness distribution of a chosen
reference configuration of the system is iteratively updated, under some a priori assumptions on the
coefficients to be identified (symmetry assumptions, lower and upper bounds, etc.). As discussed, for instance,
in Refs. [3,4], the choice of using the frequencies only implies various sources of indeterminacy. In fact, it is
well known that existence and uniqueness results in the theory of inverse problems in vibration are available
for simple systems only and, even in the case rods and beams, their require knowledge of infinite data, see
Gladwell [5,6]. Real situations are substantially different. On one hand, one can measure accurately just the
eigenfrequencies of the first few modes of a beam. On the other hand, analytical models of vibrating systems
based on classical theories offer a good precision for the first few modes only, rapidly losing accuracy for those
of higher order. Then, in studying practical cases one has a finite amount of significant data and the presence
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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of many solutions cannot be excluded. In fact, the objective function may exhibit several minima that
correspond to isolated points, or even continuous regions, in the space of the identification parameters.

Despite the indeterminacy of the mathematical formulation of this class of inverse problems and the lack of
satisfactory framework of general properties, some encouraging results have been obtained in last 30 years in
studying simple structural systems (see, for example, Refs. [7–10]) and even more complicated vibrating
structures (see, for instance, Refs. [11–17]). In particular, damage analyses performed on steel beams and
frames with single or multiple notches showed that the results of variational-type methods strictly depend on
the accuracy of the structural analytical model that one uses for the interpretation of the experiments and on
the severity of the damage to be identified, see, for example, Ref. [18]. Basic questions such as how accurate the
description of the reference configuration has to be or which a priori hypotheses are needed to avoid the non
uniqueness of the diagnostic problem have been rarely discussed from a general point of view and still are
partially open.

With a view to these questions, in this paper the damage detection problem in elastic beams is investigated
from a different point of view. Under the assumptions that the damaged configuration is a perturbation
of the undamaged one and the linear mass density remains unchanged, the frequency shifts caused by the
damage are correlated with some generalized Fourier coefficients of the unknown stiffness variation. This set
of Fourier coefficients is determined on a suitable family of functions depending on the vibration modes
of the undamaged system. When it is a priori known that the damage belongs to a half of the beam, the
measurement of first M frequency shifts, roughly speaking, allows for the determination of the first M

generalized Fourier coefficients of the stiffness change evaluated on a chosen basis of functions. A numerical
procedure based on an iterative algorithm is proposed for solving the diagnostic problem. The idea of
connecting the Fourier coefficients of the unknown coefficient with the frequency shifts is more deep and
traces back to the fundamental contribution in inverse eigenvalue theory given by Borg [19], see also Hald [20]
and Knobel and Lowe [21] for more recent numerical applications. In the context of crack identification in
elastic beams, Wu [22] proposes a reconstruction method by eigenvalues shifts based on the determination of
generalized Fourier coefficients of the stiffness variation induced by the damage. In particular, Wu [22]
considered an initially uniform pinned–pinned beam with a single symmetric crack at mid-span, see also Wu
and Fricke [23] for applications in acoustics to the identification of small blockages in a duct by
eigenfrequency shifts.

The predictions of the theory and reliability of the proposed diagnostic technique were checked on the basis
of results of several dynamic tests performed on free–free cracked steel beams, both under longitudinal and
bending vibrations. It is found that the outcome of the damage analysis via Fourier coefficients depends on the
accuracy of the analytical model that one uses for identification and on the severity of the damage. The
technique provides a satisfactory identification of the damage, both for position and severity, when frequency
shifts induced by the damage are bigger than modelling and measurement errors. For these cases, the results of
the damage identification obtained via Fourier coefficient method have been compared with those obtained
via a standard variational method based on frequency data. In all the cases considered, the comparison shows
a good agreement. This leads to the conjecture that, at least for damage detection in simple beam models,
updating the stiffness coefficient of the beam so that the distance between the first M measured and analytical
frequencies is minimized, is equivalent to finding the first M generalized Fourier coefficients of the stiffness
variation caused by the damage.

The plan of the paper is as follows. The theoretical basis of the method is presented in Section 2 for a
rod in longitudinal vibration. An iterative reconstruction procedure is shown in Section 3. Applications
to real experimental data for damage identification in rods with single and multiple cracks are discussed in
Section 4. The bending vibration case is studied in Section 5. Finally, Section 6 is devoted to a comparison
between the results obtained by the proposed diagnostic method and by a variational-type identification
technique.

2. The theoretical basis of the method

The theoretical basis of the damage identification method is presented for a straight rod in longitudinal
vibration. The bending case will be discussed in Section 5.
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2.1. Formulation of the eigenvalue problem

It is assumed that the spatial variation of the infinitesimal free vibrations of an undamaged rod of length ‘ is
governed by the differential equation

ðaðxÞu0ðxÞÞ0 þ lrðxÞuðxÞ ¼ 0 in ð0; ‘Þ, (1)

where u ¼ uðxÞ is the mode shape and
ffiffiffi
l
p

is the associated natural frequency. The rod is assumed to have no
material damping. The quantities aðxÞ ¼ EAðxÞ and rðxÞ denote the axial stiffness and the linear-mass density
of the rod. E is the Young’s modulus of the material and AðxÞ the cross-section area of the rod.

This analysis is concerned with rods for which a ¼ aðxÞ is a uniformly strictly positive and continuously
differentiable function of x in ½0; ‘�, namely

a 2 C1ð½0; ‘�Þ; aðxÞXa040 in ½0; ‘�, (2)

where a0 is a given constant. The function r ¼ rðxÞ will be assumed to be a continuous and uniformly strictly
positive function of x in ½0; ‘�, that is

r 2 C0ð½0; ‘�Þ; rðxÞXr040 in ½0; ‘�, (3)

where r0 is a given constant. Although the present analysis can be developed for general boundary conditions,
to fix the ideas the beam is taken with free ends:

að0Þu0ð0Þ ¼ 0 ¼ að‘Þu0ð‘Þ. (4)

It is well known that for coefficients a and r satisfying (2), (3), respectively, and for end conditions (4), there is
an infinite sequence flmg

1
m¼0 of real eigenvalues such that 0 ¼ l0ol1ol2o . . ., with limm!1 lm ¼ 1, see

Ref. [24]. Corresponding to every eigenvalue lm there exists a single eigenfunction um ¼ umðxÞ, m ¼ 0; 1; 2; . . .,
determined up to a multiplicative constant. In order to select uniquely the eigenfunctions, the following
normalization condition will be used Z ‘

0

ru2
m dx ¼ 1; m ¼ 0; 1; 2; . . . . (5)

The fundamental mode u0ðxÞ of the free–free rod corresponds to l0 ¼ 0 and u0ðxÞ ¼ ð
R ‘
0 rdxÞ�

1
2 in ½0; ‘�.

Suppose that a damage appears on the rod. It is assumed that the presence of the damage can be described
within the framework of the classical one-dimensional theory of rods and that it reflects on a reduction of the
effective axial stiffness without altering the mass distribution, see, for example, Refs. [25,26]. This assumption is
rather common in damage detection studies and, in fact, a careful description of damage would be hardly worth
doing, since it would require a detailed knowledge of degradation, which is not always available in advance in
inverse analysis. More refined mechanical models of beams with localized damages are presented, for example, in
Refs. [27,28]. Therefore, in the present analysis, the axial stiffness of the damaged beam will be assumed as follows:

a�ðxÞ ¼ aðxÞ þ b�ðxÞ, (6)

where the perturbation introduced by the damage satisfies the conditions:
(i)
 (regularity of b�)

b� 2 C1ð½0; ‘�Þ; (7)
(ii)
 (uniform lower and upper bound of a�) there exists a constant A040 such that

a0pa�ðxÞpA0 in ½0; ‘� (8)

and

(iii)
 (smallness of b�)

kb�kL2 ¼ �OðkakL2Þ, (9)

for a real positive number �, where jOðkakL2 ÞjockakL2 and c is a positive constant independent of �.
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In Eq. (9), the symbol kf kL2 � ð
R ‘
0 f 2
ðxÞdxÞ

1
2 denotes the norm of the Lebesgue space L2ð0; ‘Þ of the square

summable real-valued functions f on ð0; ‘Þ.
A structural damage introduces a reduction of the axial stiffness of the rod, that is

b�ðxÞp0 in ½0; ‘�. (10)

The following analysis, however, holds even for a general perturbation b�ðxÞ which takes positive and
negative values in ½0; ‘�.

Under the assumptions (7)–(9), there is an infinite sequence of eigenpairs fðum�ðxÞ; lm�Þg
1
m¼0 for the damaged

rod, with 0 ¼ l0�ol1�ol2�o . . . and limm!1 lm� ¼ 1. Moreover, under the condition (10), the variational
formulation of the eigenvalue problem given, for example, in Ref. [24] shows that eigenvalues of the rod are
decreasing functions of b�, that is

lm�olm; m ¼ 1; 2; . . . . (11)

2.2. Eigenfrequency sensitivity to damage

In this section, the damaged rod is assumed to be a perturbation of the undamaged one, that is the number �
appearing in Eq. (9) is small:

�51. (12)

The smallness of b� expressed by condition (12) allows to include in the analysis either small damages given on
large portions of the interval ½0; ‘� (the so-called diffuse damage) or severe damages concentrated in small
intervals of ½0; ‘� (localized damages). For example, the coefficient b�ðxÞ ¼ ��aðxÞ in ½0; ‘� belongs to the first
class; while b�ðxÞ ¼

a
4
ð1þ cos pðx�‘=4Þ�‘=4 Þ in ½

‘
4
ð1� �Þ; ‘

4
ð1þ �Þ�, with �o1=2 and b�ðxÞ ¼ 0 elsewhere in ½0; ‘�,

defines a severe damage localized near the cross-section of abscissa ‘=4.
Under assumption (12), an asymptotic eigenvalue expansion formula for �! 0 will be derived in the sequel.
Let ðum; lmÞ, m ¼ 0; 1; 2; . . ., be the mth normalized eigenpair of the problem (1), (4) corresponding to the

undamaged rod, with a, r satisfying conditions (2) and (3), respectively. Denote by ðum�; lm�Þ, m ¼ 0; 1; 2; . . . ;
the mth normalized eigenpair of the perturbed problem

ða�ðxÞu
0
m�ðxÞÞ

0
þ lm�rðxÞum�ðxÞ ¼ 0 in ð0; ‘Þ, (13)

a�ð0Þu
0
m�ð0Þ ¼ 0 ¼ a�ð‘Þu

0
m�ð‘Þ, (14)

where a� is defined by Eq. (6) and b� satisfies conditions (7)–(9), for a real positive number �.
The following asymptotic eigenvalue expansion holds true:

lm� ¼ lm þ

Z ‘

0

b�ðxÞðu
0
mðxÞÞ

2 dxþ rð�;mÞ; m ¼ 0; 1; 2; . . . , (15)

where

lim
�!0

jrð�;mÞj

kb�kL2

¼ 0. (16)

Formulae (15), (16) play an important role in this study and, therefore, a proof of them will be sketched in
the remaining of the present section.

The proof is based on two main results. The first one is represented by the following fundamental identity:
for every �40 and for every integer number m, m ¼ 0; 1; 2; . . ., one has

ðlm� � lmÞ

Z ‘

0

rðxÞumðxÞum�ðxÞdx ¼

Z ‘

0

b�ðxÞu
0
mðxÞu

0
m�ðxÞdx. (17)

Identity (17) can be obtained by multiplying Eq. (13) (with ðu�; l�Þ replaced by the mth eigenpair ðum�; lm�Þ)
by um and Eq. (1) (with ðu; lÞ replaced by the mth eigenpair ðum; lmÞ) by um�, and integrating by parts.
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The second result concerns with the asymptotic behavior of the solutions of the eigenvalue problem
(13)–(14) as �! 0. Since the fundamental mode is insensitive to changes of the stiffness coefficient, when
m ¼ 0 condition (15) reduces to the identity l0� ¼ l0.

Let m ¼ 1. By the variational formulation of the eigenvalue problem (13)–(14), the family fl1�g�40 is
bounded from above in R. In fact, by Eq. (8), one has

l1� ¼ min
v2H1ð0;‘Þnf0g

R ‘
0

a�v
02 dxR ‘

0 rv2 dx
pA0 min

v2H1ð0;‘Þnf0g

R ‘
0

v02 dxR ‘
0 rv2 dx

pc1, (18)

where c140 is a positive constant independent of �. In Eq. (18), H1ð0; ‘Þ denotes the Hilbert space formed by
the measurable functions f, f : ð0; ‘Þ ! R, such that both f and its first derivative f 0 (in the sense of
distributions) belong to L2ð0; ‘Þ. The norm of the function f 2 H1ð0; ‘Þ is denoted by kf kH1 �

ðkf k2
L2 þ kf

0
k2

L2Þ
1
2.

By Eqs. (8) and (18), the family fu01�g�40, with
R ‘
0 ru2

1� dx ¼ 1 for every �40, is bounded in L2ð0; ‘Þ, namelyZ ‘

0

ðu01�Þ
2 dxp

1

a0

Z ‘

0

a�ðu
0
1�Þ

2 dx ¼
l1�
a0

pc2. (19)

Therefore, there exists a subsequence of fu1�g�40 (not re-labelled, for the simplicity of notation) such that

u1�! u weakly in H1ð0; ‘Þ as �! 0 with

Z ‘

0

ru2 dx ¼ 1. (20)

A sequence fgngnX1 � L2ð0; ‘Þ converges weakly to g 2 L2ð0; ‘Þ as n!1 if and only if
R ‘
0

gnj!
R ‘
0

gj as
n!1 for every j 2 L2ð0; ‘Þ, see Ref. [29] for further details.

Moreover, the family fu01�g is uniformly bounded in the Lebesgue space of real-valued bounded functions
L1ð0; ‘Þ ¼ ff : ð0; ‘Þ ! R; fmeasurable and kf kL1 � supx2ð0;‘Þjf ðxÞjo1g, see Ref. [29]. In fact, the differ-
ential equation (13) shows that

u01�ðxÞ ¼ �
l1�

a�ðxÞ

Z x

0

rðsÞu1�ðsÞds in ½0; ‘�, (21)

where the boundary condition (14) at x ¼ 0 has been used. By Eqs. (8), (18) and Hölder inequality (see Ref.
[29]) one has

ju01�ðxÞjp
c3

a0

Z ‘

0

rds

� �1=2

in ½0; ‘� (22)

and, therefore,

ku01�kL1pc4, (23)

where c440 is a constant not depending on �.
Now, it turns out that u ¼ u1 and lim�!0 l1� ¼ l1. To show this, one can take the limit as �! 0 in the weak

formulation of the eigenvalue problem (13), (14)Z ‘

0

a�u
0
1�f
0
¼ l1�

Z ‘

0

ru1�f 8f 2 H1ð0; ‘Þ. (24)

The left-hand side of Eq. (24) can be written asZ ‘

0

a�u
0
1�f
0
¼

Z ‘

0

b�u
0
1�f
0
þ

Z ‘

0

au01�f
0. (25)

Since u01�! u0 weakly in L2ð0; ‘Þ as �! 0, the second integral in the right-hand side of Eq. (25) converges toR ‘
0 au0f 0 as �! 0. By the smallness assumption (9) on b� and by Eq. (23), the first integral converges to zero as
�! 0: Z ‘

0

b�u
0
1�f
0

���� ����pc5kb�kL2pc5�kakL2 , (26)
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where c5 is a positive constant independent of �. Therefore, the pair ðu; l ¼ lim�!0 l1�Þ satisfies the problemZ ‘

0

au0f 0 ¼ l
Z ‘

0

ruf 8f 2 H1ð0; ‘Þ, (27)

that is u ¼ u1 and l ¼ l1, with
R ‘
0 ru2

1 dx ¼ 1.
The convergence of u1� to u1 actually is strong in H1ð0; ‘Þ, that is ku1� � u1kH1 ! 0 as �! 0. In fact, let u1�

be such that
R ‘
0
ru2

1� dx ¼ 1 for every �40, and compute:Z ‘

0

aðu01 � u01�Þ
2
¼

Z ‘

0

aðu01Þ
2
þ

Z ‘

0

au01�ðu
0
1� � u01Þ �

Z ‘

0

au01u
0
1�. (28)

By Eq. (20), the third integral on the right-hand side of Eq. (28) converges to
R ‘
0 aðu01Þ

2 as �! 0. The second
integral can be written asZ ‘

0

au01�ðu
0
1� � u01Þ ¼

Z ‘

0

a�u
0
1�ðu
0
1� � u01Þ �

Z ‘

0

b�u
0
1�ðu
0
1� � u01Þ � I1� þ I2�. (29)

By the uniform estimate (23) of fu01�g, Hölder inequality and the weak convergence of u01� to u01 in L2ð0; ‘Þ as
�! 0, one has

jI2�jpc6ku
0
1�kL1kb�kL2 ku01�kL2 þ ku01kL2

� �
pc7� (30)

as �! 0, where c7 is a positive constant independent of �.
Concerning the term I1�, by using the differential equation (13) one has

a�ðxÞu
0
1�ðxÞ ¼ �l1�

Z x

0

rðsÞu1�ðsÞds in ½0; ‘�. (31)

Since lim�!0 l1� ¼ l1 and lim�!0 ku1� � u1kL2 ¼ 0, one has

a�ðxÞu
0
1�ðxÞ ! �l1

Z x

0

rðsÞu1ðsÞds strongly in L2ð0; ‘Þ as �! 0. (32)

Therefore, by Eq. (32) and recalling that u01�! u0 weakly in L2ð0; ‘Þ, one has

lim
�!0

I1� ¼ 0 (33)

and this implies that u1�! u1 strongly in H1ð0; ‘Þ as �! 0, with
R ‘
0 ru2

1 dx ¼ 1.
To obtain the desired eigenvalue expansion (15) for m ¼ 1 one can rewrite identity (17) as follows:

ðl1� � l1Þ
Z ‘

0

ru2
1 dxþ

Z ‘

0

ru1ðu1� � u1Þdx

� �
¼

Z ‘

0

b�u
0
1
2
þ

Z ‘

0

b�u
0
1ðu
0
1� � u01Þ. (34)

Therefore, by the strong convergence in H1ð0; ‘Þ of u1� to u1 as �! 0, one has

l1� � l1 ¼
Z ‘

0

b�u
0
1
2
þ oðkb�kL2 Þ, (35)

where oðkb�kL2 Þ is an higher-order term such that lim�!0
oðkb�kL2 Þ

kb�kL2
¼ 0.

The proof of Eq. (15) for mX2 follows the same lines of the case m ¼ 1 and it will not repeated here. It is
sufficient to recall that the variational formulation of the mth eigenvalue problem (13)–(14) includes also the
presence of m� 1 linear orthogonality constraints, see Ref. [24]. For example, when m ¼ 2 one has

l2� ¼ min
v2H1ð0;‘Þnf0g;

R ‘

0
rvu1�¼0

R ‘
0 a�v

02 dxR ‘
0
rv2 dx

. (36)

The limit behavior of the above orthogonality constraint can be easily handled since it is known from the
previous case m ¼ 1 that u1�! u1 strongly in L2ð0; ‘Þ as �! 0. More generally, in discussing the asymptotic
behavior of lm�, one takes advantage of knowing that ui� ! ui strongly in L2ð0; ‘Þ as �! 0 for every i,
i ¼ 1; . . . ;m� 1.
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In conclusion, one can notice that Eq. (15) can be read as a series Taylor expansion of the mth eigenvalue in
terms of the variation b�. In fact, in an abstract context, the integral term in Eq. (15) is the partial derivative of
lm� with respect to the axial stiffness coefficient a� evaluated, at � ¼ 0, on the direction b�. This partial
derivative can be interpreted as the scalar product (in L2-sense) between the gradient qlm�

qa�ðxÞ
j�¼0 ¼ ðu

0
mðxÞÞ

2 and
the direction b�, namely

qlm�

qa�ðxÞ

����
�¼0

; b�

� 	
¼

Z ‘

0

b�u
0
m
2
dx. (37)

The expression of the integral term in Eq. (15) shows that the sensitivity of the mth eigenvalue to changes of
the axial stiffness depends on the square of the first derivative of the corresponding mth vibration mode of the
unperturbed system. When the perturbation b� is localized in a small interval centered in x0, x0 2 ð0; ‘Þ,
formula (15) indicates that the first-order variation of the mth eigenvalue depends on the square of the
longitudinal strain evaluated at x0, see also Refs. [30,31] for an analogous result in the extreme cases of cracks
and notches modelled by translational elastic springs inserted at the damaged cross-sections. The explicit
expression of the first derivative of an eigenvalue with respect to cracks or notches has been used in
Refs. [32–35] to identify localized damages in rods and beams by minimal frequency measurements.
Analogous applications to discrete vibrating systems with a single localized damage are presented in Ref. [36].

The analysis has hitherto been related to rods under axial vibration with free ends. However, it is clear that,
under analogous assumptions, the asymptotic eigenvalue expansion formula (15) holds true for rods with different
boundary conditions, such as, for example, supported (uð0Þ ¼ 0 ¼ uð‘Þ) or cantilever (uð0Þ ¼ 0, að‘Þu0ð‘Þ ¼ 0).

3. A reconstruction procedure

3.1. The linearized problem

Let the free vibrations of the reference rod and the perturbed rod be governed by the eigenvalue problems
(1), (4) and (13), (14), respectively. The coefficients a and r are assumed to satisfy conditions (2) and (3),
respectively. In this section, the inverse problem of determining the perturbation b� of the axial stiffness from
measurements of the changes in the first M natural frequencies will be considered. The coefficient b� is
assumed to satisfy Eqs. (7)–(9) and, in addition, the a priori information

supp b�ðxÞ � fx 2 ð0; ‘Þ j b�ðxÞa0g � 0;
‘

2

� �
. (38)

The above condition plays an important role in the present study. It should be noticed that there are situations
important for applications in which Eq. (38) appears as a rather natural assumption. For example, if the
reference beam is symmetrical with respect to x ¼ ‘=2, then the eigenvalues lm�ðb1�Þ, lm�ðb2�Þ corresponding to
two perturbations b1�ðxÞ, b2�ðxÞ symmetrical with respect to x ¼ ‘=2, e.g. b1�ð‘ � xÞ ¼ b2�ðxÞ in ½0; ‘�, and such
that supp b1� � ð0; ‘=2Þ, supp b2� � ð‘=2; ‘Þ, are exactly the same for every m ¼ 1; 2; . . . . Loosely speaking, one
can say that the Neumann spectrum cannot distinguish left from the right. To avoid the indeterminacy due to
the structural symmetry, condition (38) will be assumed to hold. In practical diagnostic applications, Eq. (38)
is equivalent to a priori know that the damage is located on an half of the rod, see, for example, Refs. [3,4] for
applications via variational methods. It should be mentioned that diagnostic techniques based on mode shape
measurements (see Refs. [37–39]), node measurements (Refs. [40,41]), simultaneous use of resonance and
antiresonances (Ref. [42]) have been recently proposed in the specialized literature to avoid the non-uniqueness
of the damage location problem in symmetric beam structures.

In order to illustrate the reconstruction procedure, the comparatively simple example of a initially uniform
rod, with a ¼ const: and r ¼ const: in ½0; ‘�, will be firstly considered. The eigenpairs of the reference rod are
given by

umðxÞ ¼

ffiffiffiffiffi
2

r‘

s
cos

mpx

‘
; lm ¼

a

r
mp
‘


 �2
; m ¼ 1; 2; . . . . (39)



ARTICLE IN PRESS
A. Morassi / Journal of Sound and Vibration 302 (2007) 229–259236
The rigid mode u0ðxÞ is always insensitive to damage and, therefore, it will be omitted in the sequel. Putting the
expressions of lm and umðxÞ for mX1 into Eq. (15) gives

lm� � lm ¼
mp
‘


 �2 2

r‘

� �Z ‘

0

b�ðxÞ sin
2 mpx

‘
dxþ rð�;mÞ; m ¼ 1; 2; . . . , (40)

where rð�;mÞ is an higher-order term on �, see condition (16).

The family fFmðxÞg
1
m¼1, with FmðxÞ ¼

ðu0mðxÞÞ
2

lm
¼ 2

a‘ sin
2 mpx

‘ is a basis for the square summable functions

defined on ð0; ‘=2Þ. This means that any function f, f : ½0; ‘=2� ! R and f regular enough, can be expressed by
the series

f ðxÞ ¼
X1
m¼1

f mFmðxÞ, (41)

where f m is the mth generalized Fourier coefficient of f evaluated on the family fFmðxÞg
1
m¼1.

By neglecting, as a first approximation, the higher-order term rð�;mÞ in the asymptotic development of the
mth eigenvalue and expressing b� in terms of the functions fFmðxÞg

1
m¼1, that is

b�ðxÞ ¼
X1
k¼1

b�kFkðxÞ, (42)

one has

dlm� ¼
X1
k¼1

Amkb�k; m ¼ 1; 2; . . . , (43)

where

dlm� �
lm� � lm

lm

; m ¼ 1; 2; . . . , (44)

Amk �

Z ‘=2

0

FmðxÞFkðxÞdx ¼
4

a2‘2

Z ‘=2

0

sin2
mpx

‘
sin2

kpx

‘
; k;m ¼ 1; 2; . . . . (45)

A direct calculation shows that

Amk ¼
2

4a2‘
for kam; Amk ¼

3

4a2‘
for k ¼ m. (46)

In real applications only the eigenvalues of the first few vibrating modes are available. In fact, the number M

typically ranges from 3–4 to 10. Therefore, rather than studying the solution of the infinite linear system (43),
the following analysis will be focussed on its M-approximation, that is the M �M linear system formed by

dlm� ¼
XM
k¼1

AM
mkb

M
�k ; m ¼ 1; . . . ;M, (47)

where AM
mk ¼ Amk for k;m ¼ 1; . . . ;M, and fbM

�k g
M
k¼1 are the coefficients of the M-approximation of b�ðxÞ

evaluated on the family fFmðxÞg
1
m¼1.

A direct calculation shows that

detAM
mk ¼ ð2M þ 1Þ

1

4a2‘

� �M

, (48)

ðAM
mkÞ
�1
¼ ð4a2‘Þ

2M � 1

2M þ 1
if m ¼ k; ðAM

mkÞ
�1
¼ �ð4a2‘Þ

2

2M þ 1
if mak, (49)
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m; k ¼ 1; . . . ;M. Therefore, the solution of Eq. (47) has the following explicit expression:

bM
�k ¼ 4a2‘

2M � 1

2M þ 1
dlk� �

2

2M þ 1

XM
j¼1;jak

dlj�

 !
; k ¼ 1; . . . ;M, (50)

and, going back to Eq. (42), the first-order stiffness change is given by

b�ðxÞ ¼ 8a
XM
k¼1

2M � 1

2M þ 1
dlk� �

2

2M þ 1

XM
j¼1;jak

dlj�

 !
sin2

kpx

‘
. (51)

Expressions (50), (51) clarify how the relative eigenvalue shifts influence the various Fourier coefficients of the
stiffness variation b�ðxÞ. Assuming that the relative eigenvalue shifts are, in average, all of the same order, it
can be deduced from Eq. (50) that for relatively large values of M (starting from M ¼ 3–4, for example), the
kth Fourier coefficient bM

�k is mainly influenced by the variation of the corresponding kth eigenvalue. In fact,
for a given k and, for example, for M ¼ 4, the coefficient which multiplies dlk� is equal to 0:78 about, whereas
the coefficients of the remaining eigenvalue changes dlj , jak, take the lower value 0:22. This difference
becomes significant as M increases.

3.2. An iterative procedure and a numerical algorithm

The above analysis is based on a linearization of the Taylor series expansion (40) for the eigenvalues of the
perturbed rod. Therefore, the coefficient b� found by Eq. (51) does not satisfy identically equations (40). The
estimation of b� can be improved by repeating the procedure shown above starting from the updated
configuration að1Þ ¼ aþ b�, with b� as calculated at the previous step.

This suggests the following iterative procedure for solving the inverse problem. The index � has been omitted
in this part to simplify the notation. Moreover, elm denotes the mth eigenvalue lm� of the perturbed rod.

ITERATIVE PROCEDURE AND NUMERICAL ALGORITHM:
(1)
 Let að0ÞðxÞ ¼ aðxÞ, where aðxÞ is the axial stiffness of the reference rod.

(2)
 For s ¼ 0; 1; 2; . . .:

(a) solve the linear system

elm � lðsÞm ¼
XM
k¼1

AM
mkb

MðsÞ
k ; m ¼ 1; . . . ;M, (52)

where ðlðsÞm ; u
ðsÞ
m Þ is the mth normalized eigenpair of the problem

ðaðsÞu0Þ0 þ lðsÞru ¼ 0 in ð0; ‘Þ, (53)

aðsÞð0Þu0ð0Þ ¼ 0 ¼ aðsÞð‘Þu0ð‘Þ. (54)

The numbers fbMðsÞ
k gMk¼1 are the generalized Fourier coefficients of the unknown function bðsÞðxÞ,

bðsÞðxÞ ¼
PM

k¼1b
MðsÞ
k FðsÞk , and the matrix entries A

MðsÞ
mk are given by

A
MðsÞ
mk ¼

Z ‘=2

0

FðsÞm FðsÞk dx; m; k ¼ 1; . . . ;M. (55)

(b) Update the coefficient aðxÞ:

aðsþ1ÞðxÞ ¼ aðsÞðxÞ þ bðsÞðxÞ in ½0; ‘=2�. (56)
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(c) If the updated coefficient satisfies the condition

1

M

XM
m¼1

elm � lðsþ1Þmelm

 !2

og (57)

for a small given control parameter g, then stop the iterations. Otherwise, go to step (2) and repeat the
procedure.
With the exception of simple cases corresponding to special stiffness coefficients, e.g. aðxÞ ¼ const: in ½0; ‘�,
the eigenvalue problem (53)–(54) does not admits closed form eigensolutions. Therefore, for the practical
implementation of the identification algorithm resort to numerical analysis in order. The procedure herein
adopted is based on a finite element model of the rod with uniform mesh and linear displacement shape
functions. The stiffness and mass coefficients are approximated by step functions, that is aðxÞ ¼ ae ¼ const:,
rðxÞ ¼ re ¼ const: within the eth finite element. The local mass and stiffness matrices are given by

Me ¼ reD
1
3

1
6

1
6

1
3

 !
; Ke ¼ aeD�1

1 �1

�1 1

� �
, (58)

where D is the element length. The discrete approximation of the eigenvalue problem (53)–(54) was solved by
the Stodola–Vianello method, see Ref. [43]. The derivative of the eigenfunctions was evaluated by using a finite
difference scheme and the numerical integration was developed with a trapezoidal method.

In solving the linear system (52), the determination of the inverse of the matrix A
MðsÞ
mk at each step s,

s ¼ 1; 2; . . . ; is needed. If s ¼ 0, then detA
Mð0Þ
mk ¼ ð2M þ 1Þð4a2‘Þ�M by Eq. (48) and the inverse of the matrix

A
MðsÞ
mk exists. At the first step of the iteration scheme, s ¼ 1, by Eq. (55) and recalling that

uð1Þm� ¼ uð0Þm þ dum�, (59)

where dum� is a small perturbation term such that kdum�kH1 ! 0 as �! 0, it turns out that

A
Mð1Þ
mk ¼ A

Mð0Þ
mk þ dAmk;�, (60)

where dAmk;�! 0 as �! 0. Therefore, one can conclude that

detA
Mð1Þ
mk ¼ detA

Mð0Þ
mk þ small terms as �! 0, (61)

and the inverse of the matrix A
Mð1Þ
mk is well defined. By proceeding step by step and within the assumption that the

unknown stiffness coefficient is a perturbation of the initial one, the inverse of the matrix A
MðsÞ
mk is well defined.

If, during the iterative procedure, the coefficient aðsþ1Þ violates the ellipticity condition (8), then the perturbation
bðsÞ� is multiplied by a suitable step size aðsÞ, typically aðsÞ ¼ 1=2, to obtain an updated coefficient satisfying Eq. (8)
with a0 ¼

1
100

minx2½0;‘� a
ð0ÞðxÞ. This procedure is repeated at most five times during each step of the iterative process.

After that, the iterations are stopped and the current stiffness distribution is taken as solution of the reconstruction
procedure. Analogous considerations hold concerning the upper bound (8) with A0 ¼ 2maxx2½0;‘� a

ð0ÞðxÞ.
The small parameter of the convergence criterion (57) is taken as g ¼ 1:0� 10�12 and an upper bound of 50

iterations was introduced.

3.3. Some extension

The analysis presented in Sections 3.1, 3.2 is referred to an initially uniform rod under free–free boundary
conditions. Aim of this part is to show how the above results can be extended to include rods under different
sets of boundary conditions and rods with initial varying profile.

The longitudinal free vibration of an initially uniform rod under supported (S) boundary conditions is firstly
considered. Within the notation of the previous sections, the eigenpairs of the unperturbed rod are given by

uS
mðxÞ ¼

ffiffiffiffiffi
2

r‘

s
sin

mpx

‘
; lS

m ¼
a

r
mp
‘


 �2
; m ¼ 1; 2; . . . . (62)
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Let fðuS
m�; l

S
m�Þg

1
m¼1 be the (normalized) eigenpairs of the perturbed problem

ða�ðxÞu
S
m�
0
ðxÞÞ0 þ lS

m�rðxÞu
S
m�ðxÞ ¼ 0 in ð0; ‘Þ, (63)

uS
m�ð0Þ ¼ 0 ¼ uS

m�ð‘Þ, (64)

where a� is defined by Eq. (6) and b� � a� � a satisfies conditions (7)–(9), for a real positive number �.
Putting the expressions of lS

m� and uS
m�, for mX1, into Eq. (15) (see the remarks at the end of Section 2.2)

gives

lS
m� � lS

m ¼
mp
‘


 �2 2

r‘

� �Z ‘

0

b�ðxÞ cos
2 mpx

‘
dxþ rð�;mÞ; m ¼ 1; 2; . . . , (65)

where lim�!0
jrð�;mÞj
� ¼ 0. Since the family fFS

mðxÞg
1
m¼1, where FS

mðxÞ ¼
ðuS

m

0
ðxÞÞ2

lS
m

¼ 2
a‘ cos

2 mpx
‘ , is complete in

L2ð0; ‘=2Þ, one can try to find a first approximation of b� by expressing it as a linear combination of the first M

functions fFS
mðxÞg

M
m¼1, as it was made before. Then, an iterative procedure similar to that shown in Sections

3.1, 3.2 can be used to estimate b� in terms of the first M eigenfrequency changes induced by the damage.
Passing to another set of boundary conditions, the mth eigenpair of an initially uniform rod with left

supported end and free right end (cantilever C) is given by

uC
mðxÞ ¼

ffiffiffiffiffi
2

r‘

s
sin

pð1þ 2mÞx

2‘
; lC

m ¼
a

r
p
2‘
ð1þ 2mÞ


 �2
; m ¼ 0; 1; . . . . (66)

The family fFC
mðxÞg

1
m¼0, with FC

mðxÞ ¼
ðuC

m

0
ðxÞÞ2

lC
m

¼ 2
a‘ cos

2 pð1þ2mÞx
2‘ , is complete in L2ð0; ‘=2Þ and, again, the

procedure can be adapted to estimate b�.
As it should be clear from the above analysis, a crucial point of the proposed procedure concerns the

completeness of the family of (suitably scaled) first derivatives-squares of the longitudinal vibration modes in
L2ð0; ‘=2Þ. This property easily follows from the explicit expression of the eigenpairs available in the case of a
uniform rod. In the remaining of the present Section, the general case of varying profile is briefly discussed. To
simplify the analysis it is decided to consider the case of a rod with free ends and smooth, uniformly positive
coefficients a and r. The method to be accounted for can be easily extended in such a way as to take general
boundary conditions.

It is worth pointing out that if ðumðxÞ; lmÞ is an eigenpair of the eigenvalue problem (1), (4), then ðNmðxÞ ¼

aðxÞu0mðxÞ; lmÞ is an eigenpair of the Dirichlet eigenvalue problem

ða�ðxÞN 0mðxÞÞ
0
þ lmr�ðxÞNmðxÞ ¼ 0 in ð0; ‘Þ, (67)

Nmð0Þ ¼ 0 ¼ Nmð‘Þ, (68)

wherein a� ¼ r�1, r� ¼ a�1.
Now, by the general result by Borg in Ref. [44], the set fN2

mðxÞg
1
m¼1 is complete in L2ð0; ‘=2Þ and, recalling

that NmðxÞ ¼ aðxÞu0mðxÞ, this is enough to prove the desired completeness property in the case of varying
coefficient.

4. Applications

The reconstruction procedure presented in the previous section has been applied to identify stiffness
variations caused by localized damages in longitudinally vibrating beams. The principal results of
identification are summarized in the sequel.

The experimental models consisted of bars under free–free boundary conditions. Every specimen was
damaged by saw-cutting the transversal cross-section. The width of each notch was approximately equal to
1.5mm and, because of the small level of the excitation, during the dynamic tests each notch remains always
open.

In the first experiment, the steel rod of series HE100B (rod 1) shown in Fig. 1(a) was considered, see
Ref. [45] for more details on dynamic testing. By using an impulsive dynamic technique, the first nine natural
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Fig. 1. (a)–(c) Experimental models of axially vibrating rods and damage configurations: (a) rod 1; (b) rod 2; (c) rod 3. Lengths in mm.

Table 1

Experimental frequencies of rod 1 and analytical values for the undamaged configuration (the rigid body motion is omitted)

Mode Undamaged Damage D1 Damage D2

n Exper. Model Dn% Exper. Dn% Exper. Dn%

1 861.4 861.1 0.00 805.7 �6.17 737.6 �14.37

2 1722.2 1722.2 0.00 1664.5 �3.35 1600.0 �7.10

3 2582.9 2583.3 0.02 2541.9 �1.59 2505.3 �3.00

4 3434.2 3444.4 0.30 3162.2 �7.92 3016.0 �12.18

5 4353.6 4305.5 �1.10 4332.2 �0.49 4310.2 �1.00

6 5174.4 5166.6 �0.15 4961.1 �4.12 4812.6 �6.99

7 6020.0 6027.7 0.13 5750.2 �4.48 5616.0 �6.71

8 6870.5 6888.8 0.27 6860.2 �0.15 6851.3 �0.27

9 7726.4 7749.9 0.30 7302.3 �5.49 7095.8 �8.16

Undamaged configuration: EA ¼ 5:4454� 108 N, r ¼ 20:4kg=m, ‘ ¼ 3:0m; Dn% ¼ 100 � ðf model
n � f exp

n Þ=f exp
n . Damage scenarios D1 and

D2; abscissa of the cracked cross-section s ¼ 1:125m; Dn% ¼ 100 � ðf dam
n � f undam

n Þ=f undam
n . Frequency values in Hz.

A. Morassi / Journal of Sound and Vibration 302 (2007) 229–259240
frequencies of the undamaged bar and of the bar under a series of two damage configurations (D1 and D2)
were determined. The rod was suspended by two steel wire ropes to simulate free–free boundary conditions.
The excitation was introduced at one end by means of an impulse force hammer, while the axial response was
measured by a piezoelectric accelerometer fixed at the centre of an end cross-section of the rod. Vibration
signals were acquired by a dynamic analyzer HP35650 and then determined in the frequency domain to
measure the relevant frequency response term (inertance). The well-separated vibration modes and the very
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small damping allowed identification of the natural frequencies by means of single mode technique. The
damage configurations were obtained by introducing a notch of increasing depth at s ¼ 1:125m from one end.
Table 1 compares the first nine experimental natural frequencies for the undamaged and damaged rod. The
analytical model of the undamaged configuration generally fits well with the real case and the percentage
errors are lower than 1% within the measured modes. The eigenfrequency shifts induced by the damage are
relatively large with respect to the modelling errors and rod 1 provides an example for which the damage is
rather severe from the beginning.

The rod was discretized in 200 equally spaced finite elements and the identification procedure was applied by
considering an increasing number of natural frequencies M, M ¼ 1; . . . ; 9. The chosen finite element mesh
guarantees for the presence of negligible discretization errors during the identification process. Figs. 2 and 3
show the identified stiffness coefficient when M ¼ 3; 5; 7; 9 natural frequencies are considered in identification,
for damage D1 and D2, respectively. Convergence of the iterative process seems to be rather fast and,
typically, less than 10 iterations are sufficient to reach the optimal solution.

As it was expected from the representation formula (42), the reconstruction coefficient shows a wavy
behavior around the reference (constant) value a0. The maximum values of the positive increments are, in
some cases, comparable with the maximum reduction in stiffness, which occurs near the actual damage
location s ¼ 1:125m. However, the extent of the regions with positive change in stiffness becomes less
important as the number of frequencies M increases and when more severe levels of damage are considered in
the analysis.

From Figs. 2 and 3 it can been seen that the reconstructed coefficient can give an indication where the
damage is located. The results of identification can be slightly improved by recalling that, from the physical
point of view, the coefficient adamðxÞ clearly cannot be greater than the reference value a0ðxÞ. This suggests to a
posteriori set the identified coefficient to be equal to að0ÞðxÞ wherever adamðxÞ4að0ÞðxÞ, see also Ref. [22].

The results of most diagnostic techniques based on dynamic data strictly depend on the accuracy of the
analytical model considered for the interpretation of the measurements and the severity of the damage to be
identified. Rod 1 provides an example for which the analytical model (of the reference system) is very accurate
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Fig. 2. (a)–(d) Rod 1: identified axial stiffness EA for damage D1 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s ¼ 1:125m.
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Fig. 3. (a)–(d) Rod 1: identified axial stiffness EA for damage D2 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s ¼ 1:125m.
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and for which the damage is rather severe from the beginning. Therefore, in order to study the sensitivity of
the proposed reconstruction procedure to small levels of damage, in the second experiment a steel rod of
square solid cross-section with a small crack was considered (rod 2). By adopting an experimental technique
similar to that used for rod 1, the undamaged bar and three damaged configurations obtained by introducing a
notch of increasing depth at s ¼ 1:000m from one end, see Fig. 1(b).

The analytical model turns out to be extremely accurate with percentage errors less than those of the first
experiment and lower than 0:2% within the first 20 vibrating modes, cf. Table 2.

The percentage of frequency shifts caused by the damage are of order 0:1% and 0.3–0.4% for damage D1
and D2, respectively. Therefore, for these two configurations it is expected that modelling errors could mask
the changes induced by damage. The results of identification are summed up in Figs. 4–7 for an increasing
number of frequencies. It can be seen that a reduction of stiffness near the actual damage location appears for
the configuration D2 when more than 5 frequencies are considered in identification. Figs. 6 and 7 show that
the damage D3 is clearly identified when the first 3–5 frequencies are measured. In this case, the results show a
good stability of the identification when an increasing number of frequencies is considered in the analysis.

In the third experiment, the diagnostic technique was tested on a free–free longitudinally vibrating beam
(rod 3) with multiple localized damages. The experimental model is shown in Fig. 1(c) and Table 3 compares
the first nine measured frequencies for four damage configurations D1–D4. Configurations D1 and D2
correspond, respectively, to an asymmetric and a symmetric notch of increasing depth placed at the same
cross-section of the rod, at 0.700m from the left end. Configurations D3 and D4 were obtained in a similar
way by saw-cutting the beam at progressive depth at 1:100 m far from the previous notched cross-section. As
for rod 1, this experimental model is characterized by damages which are rather severe from the beginning.
Eigenfrequency reductions, in fact, are of order 1–5% and 1–12% for first two configurations D1 and D2,
respectively, and they belong to the range 5–20% in the most severe level of damage D4. The results of damage
identification are summarized in Figs. 8–11 and they essentially confirm those obtained for the previous cases.
In particular, the identification method seems to be able to estimate the position of multiple cracks in the rod
when at least 5–7 frequencies are considered in the analysis. These results suggest that, when it is a priori
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Fig. 4. (a)–(d) Rod 2: identified axial stiffness EA for damage D2 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s ¼ 1:000m.

Table 2

Experimental frequencies of rod 2 and analytical values for the undamaged configuration (the rigid body motion is omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3

n Exper. Model Dn% Exper. Dn% Exper. Dn% Exper. Dn%

1 882.25 882.25 0.00 881.5 �0.09 879.3 �0.33 831.0 �5.81

2 1764.6 1764.5 �0.01 1763.3 �0.07 1759.0 �0.32 1679.5 �4.82

3 2645.8 2646.8 0.04 2644.0 �0.07 2647.0 0.05 2646.5 0.03

4 3530.3 3529.0 �0.04 3526.8 �0.10 3516.5 �0.39 3306.0 �6.35

5 4411.9 4411.3 �0.01 4408.8 �0.07 4400.0 �0.27 4250.0 �3.67

6 5293.9 5293.5 �0.01 5294.3 0.01 5295.3 0.03 5287.8 �0.12

7 6175.4 6175.8 0.01 6168.8 �0.11 6150.3 �0.41 5808.5 �5.94

8 7056.7 7058.0 0.02 7052.0 �0.07 7039.5 �0.24 6864.3 �2.73

9 7937.9 7940.3 0.03 7937.5 �0.01 7938.0 0.00 7909.5 �0.36

10 8819.9 8822.5 0.03 8809.8 �0.11 8782.0 �0.43 8340.0 �5.44

11 9702.7 9704.8 0.02 9697.3 �0.06 9682.8 �0.21 9503.3 �2.06

12 10583.8 10587.0 0.03 10582.8 �0.02 10581.3 �0.02 10514.8 �0.65

13 11464.3 11469.3 0.04 11449.0 �0.13 11410.5 �0.47 10933.5 �4.63

14 12345.2 12351.5 0.05 12339.5 �0.05 12331.5 �0.11 12158.0 �1.52

15 13224.4 13233.8 0.07 13222.8 �0.01 13322.0 +0.74 13098.0 �0.96

16 14104.0 14116.0 0.09 14087.0 �0.12 14039.0 �0.46 13543.0 �3.98

17 14985.0 14998.0 0.09 14979.0 �0.04 14964.0 �0.14 14811.0 �1.16

Undamaged configuration: EA ¼ 9:9491� 107 N, r ¼ 3:735kg=m, ‘ ¼ 2:925m; Dn% ¼ 100 � ðf model
n � f exp

n Þ=f exp
n . Damage scenarios D1,

D2 and D3; abscissa of the cracked cross-section s ¼ 1:000m; Dn% ¼ 100 � ðf dam
n � f undam

n Þ=f undam
n . Frequency values in Hz.
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Fig. 5. (a)–(d) Rod 2: identified axial stiffness EA for damage D2 with M ¼ 11 (a), M ¼ 13 (b), M ¼ 15 (c) and M ¼ 17 (d) frequencies.

Actual damage location s ¼ 1:000m.
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Fig. 6. (a)–(d) Rod 2: identified axial stiffness EA for damage D3 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s ¼ 1:000m.
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Fig. 7. (a)–(d) Rod 2: identified axial stiffness EA for damage D3 with M ¼ 11 (a), M ¼ 13 (b), M ¼ 15 (c) and M ¼ 17 (d) frequencies.

Actual damage location s ¼ 1:000m.

Table 3

Experimental frequencies of rod 3 and analytical values for the undamaged configuration (the rigid body motion is omitted)

Mode Undamaged Damage D1 Damage D2 Damage D3 Damage D4

n Exper. Model Dn% Exper. Dn% Exper. Dn% Exper. Dn% Exper. Dn%

1 646.13 646.13 0.00 637.0 �1.41 618.5 �4.28 589.3 �8.8 548.9 �15.1

2 1290.9 1292.3 0.11 1202.4 �6.86 1142.1 �11.52 1142.6 �11.5 1140.8 �11.6

3 1935.1 1938.4 0.17 1846.0 �4.61 1744.8 �9.84 1651.6 �14.7 1539.3 �20.5

4 2579.9 2584.5 0.18 2495.5 �3.27 2450.9 �5.00 2438.4 �5.5 2425.5 �6.0

5 3220.3 3230.6 0.32 3199.6 �0.64 3180.9 �1.22 3072.5 �4.6 2907.0 �9.7

6 3844.6 3876.8 0.84 3834.0 �0.28 3817.4 �0.79 3757.0 �2.3 3639.0 �5.4

7 4544.5 4522.9 �0.48 4407.4 �3.02 4054.9 �10.77 4000.6 �12.0 3980.9 �12.4

8 5169.9 5169.9 �0.02 4904.5 �5.13 4801.1 �7.13 4782.0 �7.5 4771.8 �7.7

9 5809.3 5815.1 0.10 5711.4 �1.68 5541.8 �4.61 5262.3 �9.4 5137.6 �11.6

Undamaged configuration: EA ¼ 5:5508� 108 N, r ¼ 20:775kg=m, ‘ ¼ 4:000m; Dn% ¼ 100 � ðf model
n � f exp

n Þ=f exp
n . Damage scenarios D1,

D2, D3 and D4; abscissa of the cracked cross-sections: s1 ¼ 0:700m, s2 ¼ 1:800m; Dn% ¼ 100 � ðf dam
n � f undam

n Þ=f undam
n . Frequency values

in Hz.
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known that the damages are concentrated, the proposed method can be advantageously applied to obtain
information on the number of the damages present in the rod.
5. The bending vibration case

In the previous sections, the problem of identifying the stiffness change induced by a damage in an axially
vibrating beam from frequency measurements has been discussed. Here, the corresponding problem for a
beam in bending vibration will be considered.
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Fig. 8. (a)–(d) Rod 3: identified axial stiffness EA for damage D1 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s1 ¼ 0:700m.
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Fig. 9. (a)–(d) Rod 3: identified axial stiffness EA for damage D2 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d) frequencies. Actual

damage location s1 ¼ 0:700m.
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Fig. 10. (a)–(d) Rod 3: identified axial stiffness EA for multiple damage D3 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d)

frequencies. Actual damage locations s1 ¼ 0:700m and s2 ¼ 1:800m.
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Fig. 11. (a)–(d) Rod 3: identified axial stiffness EA for multiple damage D4 with M ¼ 3 (a), M ¼ 5 (b), M ¼ 7 (c) and M ¼ 9 (d)

frequencies. Actual damage locations s1 ¼ 0:700m and s2 ¼ 1:800m.
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5.1. The reconstruction procedure in the bending case

The physical model, which will be investigate, is a simply supported Euler–Bernoulli beam. The undamped
free vibration of the undamaged beam are governed by the boundary-value problem

ðjðxÞv00ðxÞÞ00 � lrðxÞvðxÞ ¼ 0 in ð0; ‘Þ,

vð0Þ ¼ 0 ¼ vð‘Þ,

jð0Þv00ð0Þ ¼ 0 ¼ jð‘Þv00ð‘Þ, (69)

where v ¼ vðxÞ is the transversal displacement of the beam,
ffiffiffi
l
p

is the associated natural frequency and
r ¼ rðxÞ denotes the linear mass density. The quantity jðxÞ ¼ EJðxÞ is the bending stiffness of the beam. E is
the Young’s modulus of the material and J ¼ JðxÞ the moment of inertia of the cross-section. The function r is
assumed to satisfy conditions (3). The bending stiffness j is such that

j 2 C2ð½0; ‘�Þ; jðxÞXj040 in ½0; ‘�, (70)

where j0 is a given constant.
Under the above assumptions on the coefficients, problem (69) has an infinite sequence of eigenpairs
fðvm; lmÞg

1
m¼1, with 0ol1ol2o . . ., limm!1 lm ¼ 1 and where the mth vibration mode is assumed to satisfy

the normalization condition
R ‘
0 rv2m ¼ 1 for every m, mX1.

In analogy with the axial case, it is assumed that a structural damage can be described within the classical
one-dimensional theory of beams and that it reflects on a reduction of the effective bending stiffness, without
introducing changes on the mass distribution. Following the analysis presented in Section 2.2, the bending
stiffness of the damaged beam is taken as

j�ðxÞ ¼ jðxÞ þ b�ðxÞ, (71)

where the perturbation b� is assumed to satisfy the following conditions:
(i)
 (regularity of b�)
b� 2 C2ð½0; ‘�Þ; (72)
(ii)
 (uniform lower and upper bound of j�) there exist a constant J0 such that
j0pj�ðxÞpJ0 in ½0; ‘�; (73)
(iii)
 (smallness of j�)
kb�kL2 ¼ �OðkjkL2 Þ (74)

for a real positive number �.
The free bending vibrations of the damaged beam are governed by the eigenvalue problem

ðj�v
00
� Þ
00
� l�rv� ¼ 0 in ð0; ‘Þ,

v�ð0Þ ¼ 0 ¼ v�ð‘Þ,

j�ð0Þv
00
� ð0Þ ¼ 0 ¼ j�ð‘Þv

00
� ð‘Þ. (75)

Under the above assumptions (72)–(74), the perturbed problem has a sequence of eigenpairs fðvm�; lm�Þg
1
m¼1,

with 0ol1�ol2�o . . . and limm!1 lm� ¼ 1. The mth vibration mode is assumed to satisfy the normalization
condition

R ‘
0 rv2m� ¼ 1 for every m, mX1, and for every �40.

The present analysis will concern with perturbations of the reference beam. This condition is expressed by
requiring that

�51. (76)
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By applying a technique similar to that shown in Section 2.2 for the longitudinal vibration case, the following
asymptotic development for the mth eigenvalue holds:

lm� ¼ lm þ

Z ‘

0

b�ðxÞðv
00
mðxÞÞ

2 dxþ rð�;mÞ; m ¼ 1; 2; . . . , (77)

where

lim
�!0

jrð�;mÞj

kb�kL2

¼ 0. (78)

As in the second-order case, the main point of the proof concerns with the asymptotic behavior of the
eigensolutions fðvm�; lm�Þg

1
m¼1 as �! 0. On adapting the arguments presented from Eq. (18) to Eq. (28) and

taking into account the comments made after Eq. (36), one can prove that

vm�! vm strongly in H2ð0; ‘Þ as �! 0, (79)

lim
�!0

lm� ¼ lm; m ¼ 1; 2; . . . . (80)

Here, H2ð0; ‘Þ denotes the Hilbert space formed by the measurable functions f, f : ð0; ‘Þ ! R, such that both f

and its derivatives f 0, f 00 (in the sense of distributions) belong to L2ð0; ‘Þ. The second ingredient is the
fundamental identity

ðlm� � lmÞ

Z ‘

0

rðxÞvmvm� dx ¼

Z ‘

0

b�ðxÞv
00
mv00m� dx, (81)

which holds for every �40 and for every integer number m, m ¼ 1; 2; . . . . Identity Eq. (81) follows by
multiplying Eq. (69)1 (with ðv�; l�Þ replaced by the mth eigenpair ðvm�; lm�Þ) by vm and Eq. (75)1 (with ðv; lÞ
replaced by the mth eigenpair ðvm; lmÞ) by vm�, and by integration by parts. By Eqs. (79)–(81) the desired
Taylor series expansion (77)–(78) follows. The above analysis can be clearly extended to consider beams with
more general boundary conditions, see Section 5.2 for applications to free–free beams.

The integral term in the right-hand side of Eq. (77) shows that the sensitivity of the mth eigenvalue to
variations of the bending stiffness depends on the square of the curvature of the mth vibration mode of the
reference beam. The limit case of Eq. (77) for localized damages, as cracks or notches modelled by an elastic
rotational spring inserted at the damaged cross-sections, was considered in Ref. [31].

The reconstruction procedure based on Eqs. (77)–(78) will be developed under the additional a priori
assumption that the stiffness variation occurs on one half of the beam:

supp b�ðxÞ � 0;
‘

2

� �
. (82)

The case of an initially uniform beam will be firstly considered. The eigenpairs of the reference beam are
given by

vmðxÞ ¼

ffiffiffiffiffi
2

r‘

s
sin

mpx

‘
; lm ¼

j

r
mp
‘


 �4
; m ¼ 1; 2; . . . . (83)

Inserting the expressions of vm and lm into Eq. (81) gives

lm� � lm ¼
mp
‘


 �4 2

r‘

� �Z ‘

0

b�ðxÞ sin
2 mpx

‘
dxþ rð�;mÞ; m ¼ 1; 2; . . . , (84)

where rð�;mÞ is an higher-order term on �. Expressing b�ðxÞ in terms of the functions f
ðv00mÞ

2

lm
g1m¼1, that is

b�ðxÞ ¼
X1
k¼1

b�k
ðv00kÞ

2

lk

(85)
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and using the linearized form of Eq. (84), one has

dlm� ¼
X1
k¼1

Amkb�k; m ¼ 1; 2; . . . , (86)

where

dlm� �
lm� � lm

lm

; m ¼ 1; 2; . . . . (87)

If, as it was made for the axial vibration case, only the first M eigenfrequencies are considered as data in
identification, then the M-approximation bM

�k of b�k, see Section 3, has the explicit expression (50) and, finally,
the first-order approximation of the bending stiffness variation is given by

b�ðxÞ ¼ 8j
XM
k¼1

2M � 1

2M þ 1
dlk� �

2

2M þ 1

XM
j¼1;jak

dlj�

 !
sin2

kpx

‘
. (88)

This completes the study of the linearized inverse problem. The analysis of the general case is based on
iterative application of the above linearized approach. The main steps of the numerical algorithm are
essentially those already explained in Section 3 for the longitudinal vibration case. The numerical code is based
on a finite element model of the beam with uniform mesh and cubic displacement shape functions. The
stiffness and mass coefficients are approximated with constant value functions within the generic eth finite
element. The local consistent-mass (for translational inertia) and the stiffness matrices are given by

Me ¼
reD
420

156 22D 54 �13D

22D 4D2 13D �3D2

54 13D 156 �22D

�13D �3D2 �22D 4D2

0BBB@
1CCCA, (89)

Ke ¼
je

D3

12 6D �12 6D

6D 4D2 �6D 2D2

�12 �6D 12 �6D

6D 2D2 �6D 4D2

0BBB@
1CCCA, (90)

where D is the length of the generic element. The second derivative of the eigenfunctions was estimated by
using a finite difference approximation on the rotational degrees of freedom of the discrete finite element
model.

5.2. Applications

The above reconstruction technique was tested to detect damage on several real beams in bending vibration.
The results obtained on a free–free beam with solid square cross-section, beam 1 of Fig. 12, are briefly
summarized in the sequel. The beam is studied under free–free boundary conditions and the finite element
model includes 100 equally spaced finite elements. With this fine mesh, the first lower frequencies of the
discrete model are practically indistinguishable from those of the Euler–Bernoulli model.

The specimen was suspended from above by means of two soft springs, so to simulate free–free boundary
conditions. It should be recalled that the free–free beam has a double multiplicity zero eigenvalue,
corresponding to two independent rigid body motions. These vibrating modes are insensitive to damage and
will be omitted in the sequel. The damage consisted of two symmetric notches placed at the cross-section at
0:255 m from the left end, see Fig. 12. Their depth was progressively increased by 1mm at a time from the
undamaged configuration to a final level of damage D6 corresponding to a depth of 6mm on both sides of the
cross-section. For each level, the lowest seven natural frequencies were measured according to an impulse
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Fig. 12. Experimental model of bending vibrating beam (beam 1) and damage configurations. Lengths in mm.

Table 4

Experimental frequencies of beam 1 and analytical values for the undamaged configuration (rigid body motions are omitted)

Mode Undamaged D1 D2 D3 D4 D5 D6

n Exper. Model Dn% Exper. Dn% Exper. Dn% Exper. Dn% Exper. Dn% Exper. Dn% Exper. Dn%

1 72.19 72.19 0.00 72.19 0.00 72.16 �0.05 72.16 �0.05 72.06 �0.18 71.94 �0.35 71.53 �0.91

2 198.40 198.99 0.30 198.31 �0.04 198.06 �0.17 197.68 �0.36 196.44 �0.99 194.69 �1.87 189.25 �4.61

3 387.73 390.11 0.61 387.50 �0.06 386.84 �0.23 385.33 �0.62 381.56 �1.59 374.97 �3.29 360.96 �6.90

4 639.72 644.87 0.81 639.38 �0.05 638.41 �0.21 636.28 �0.54 630.81 �1.39 623.78 �2.49 607.03 �5.11

5 951.47 963.33 1.25 951.31 �0.02 950.75 �0.08 950.03 �0.15 947.03 �0.47 943.47 �0.84 935.16 �1.71

6 1320.56 1345.47 1.89 1320.56 0.00 1320.34 �0.02 1320.25 �0.02 1319.97 �0.04 1319.97 �0.04 1319.16 �0.11

7 1747.03 1791.30 2.53 1746.81 �0.01 1746.63 �0.02 1746.13 �0.05 1742.88 �0.24 1739.41 �0.44 1728.28 �1.07

Undamaged configuration: EJ ¼ 2627:32Nm2, r ¼ 3:083kg=m; ‘ ¼ 1:200m; Dn% ¼ 100 � ðf model
n � f exp

n Þ=f exp
n . Damage scenarios D1–D6;

abscissa of the cracked cross-section: s ¼ 0:225m; Dn% ¼ 100 � ðf dam
n � f undam

n Þ=f undam
n . Frequency values in Hz.
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technique, see Ref. [4] for more details on the experiments. Beam 1 provides an example for which the
analytical Euler–Bernoulli model is fairly good in the full range of measured frequencies, with percentage
deviations which are less than 3% on the range of frequency of interest, cf. Table 4. However, frequency
variations between the undamaged and damaged configurations are very small so that, at least up to the fourth
level of damage D4, they become mixed up with the modelling errors. In fact, the identification gives poor
results up to damage level D4, see Figs. 13–15. It is worth noting that the use of frequencies f 52f 7 that are
affected by relatively large model errors, as compared with the frequency changes induced by the damage,
leads to unsatisfactory stiffness distribution. Starting from level D5, a clear tendency emerges to a reduction of
stiffness localized around the real position of the damage. Again it can be shown that use of higher frequencies
such as f 6 and f 7 obscures this trend until the damage becomes particularly severe.

6. A comparison with a variational-type method

In this section, an identification technique based on a variational-type method will be presented and applied
to damage detection in beams. The results will be compared with those obtained by the Fourier coefficient
procedure illustrated in the previous sections.
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Fig. 13. (a)–(f) Beam 1: identified bending stiffness EJ for damage D3 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c), M ¼ 5 (d), M ¼ 6 (e) and

M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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The literature of variational-type methods based on eigenfrequency data is extensive, see, for example, the
book [2] for a general overview and Refs. [1,8–16,28] for specific applications. Here, reference is made to the
procedure adopted in Refs. [3,4] in the study of cracked beams by means of discrete models based on a special
lumping of the stiffness and inertial properties of the continuous systems, and then extended in Ref. [18] to
standard finite element models of beam structures.

Following is an outline of the identification technique in the case of a continuous Euler–Bernoulli beam in
free bending vibration. The continuous model of the beam is substituted by a N degree of freedom finite
element model, whose free undamped vibrations are governed by the discrete eigenvalue problem

KNvN
n ¼ lN

n M
NvN

n , (91)

where lN
n � ð2pf N

n Þ
2 and vN

n , v
N
n a0; n ¼ 1; . . . ;N, are the eigenvalues and eigenvectors of the discrete system,

respectively. As usual, the global stiffness matrix KN and the global mass matrix MN are obtained by
assembling the contribution of all the N elements of the discrete model. In particular

KN ¼
XN

e¼1

aeKe, (92)

where Ke is the stiffness matrix of the eth finite element and faeg
N
e¼1 is the collection of the ‘‘stiffness

multipliers’’, see expression (90).
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Fig. 14. (a)–(f) Beam 1: identified bending stiffness EJ for damage D4 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c), M ¼ 5 (d), M ¼ 6 (e) and

M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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It is assumed that the presence of a concentrate damage can be described within the framework of
Euler–Bernoulli theory of beams and that it reflects into a localized reduction of the effective bending stiffness
or, equivalently, a reduction of the multiplier ae in the whole finite element. Then, one can consider the
collection of aes as descriptive of the stiffness distribution for the damaged system.

The approach to identification is of variational type and the problem becomes the following:

to find faopte g
P
e¼1 2 R

P such that F ðaopt1 ; . . . ; aoptP Þ ¼ minF ða1; . . . ; aPÞ (93)

for ae40, e ¼ 1; . . . ;P, where the distance between the first M experimental lexpn and analytical lmodel
n

eigenvalues is given by

F ða1; . . . ; aPÞ ¼
XM
n¼1

1�
lmodel

n ða1; . . . ; aPÞ

lexpn

 !2

. (94)

An iterative algorithm based on an optimal gradient descent method has been used in solving the
minimization problem (93)–(94), see Ref. [3] for more details. Since the variational problem is not convex, the
success of the technique crucially depends on the choice of a good initial estimate of the stiffness multipliers to
be identified. Here, the stiffness distribution of the undamaged beam has been chosen as initial point in
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Fig. 15. (a)–(f) Beam 1: identified bending stiffness EJ for damage D6 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c), M ¼ 5 (d), M ¼ 6 (e) and

M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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minimization. Finally, the iterations go on until the relative variation of F ðaeÞ � F ða1; . . . ; aPÞ and fa1; . . . ; aPg

at the kth step satisfy a chosen criterion of smallness, namely

F ðaðkþ1Þe Þ � F ðaðkÞe Þ

F ðaðkÞe Þ

�����
�����þXP

e¼1

aðkþ1Þe � aðkÞe

aðkÞe

���� ����p10�6. (95)

The variational method has been applied for damage identification in the same experimental models
presented in Section 4 (axial vibrating rods) and in Section 5.2 (bending vibration beams). In particular,
the results obtained on a free–free bending vibrating beam with solid square section of Fig. 12 (beam 1 of
Section 5.2) are discussed in detail in the sequel. The finite element model includes 100 equally spaced finite
elements and, as before, the damage is supposed to occur on the left half of the beam.

The results of identification are summarized in Figs. 16–18 for damage D3, D4 and D6, respectively. It turns
out that the optimal stiffness distributions obtained by solving the variational problem (93)–(94) are very close
to those deduced by the Fourier coefficient method (see Figs. 13–15). Similar results have been obtained in
studying all the other experimental models (rods 1, 2 and 3 of Section 4).
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Fig. 16. (a)–(f) Beam 1 (optimization method): identified bending stiffness EJ for damage D3 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c),

M ¼ 5 (d), M ¼ 6 (e) and M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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7. Concluding remarks

The first part of this paper has been focussed on detecting damage from the knowledge of the damage-
induced shifts in lower frequencies of a longitudinally vibrating rod under free–free boundary conditions.
Under the a priori assumption that the damage belongs to a half of the rod and the linear mass density
remains unchanged, it was shown that frequency shifts can be used to determine certain generalized Fourier
coefficients of the axial stiffness variation caused by the damage. From a general point of view, this diagnostic
problem is a version of the Hochstadt–Lieberman result proved in Ref. [46] when only finite eigenvalue data is
available. More precisely, on adapting the arguments of Ref. [46], it can be shown that if the axial stiffness of a
longitudinally vibrating rod is known on a half of the rod, then the full set of natural frequencies determines
uniquely the axial stiffness on the remaining half of the rod. Unfortunately, it is not know, to the best of the
author knowledge, a corresponding stability result when only the first lower eigenvalues are available.
Nevertheless, the proposed diagnostic technique provided a satisfactory identification of the damage, both for
position and severity, when the first 5–10 eigenvalues are considered in the analysis and frequency shifts
induced by the damage are bigger than modelling and measurement errors.
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Fig. 17. (a)–(f) Beam 1 (optimization method): identified bending stiffness EJ for damage D4 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c),

M ¼ 5 (d), M ¼ 6 (e) and M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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The second part of the paper has been devoted to the study of the corresponding diagnostic problem for
pinned–pinned beams in transversal vibration. As before, the bending stiffness is given on a half of the beam
and the frequency shifts induced by the damage on first lower frequencies are used to reconstruct the stiffness
on the remaining half of the beam and, finally, to identify position and severity of the damage. For the
corresponding mathematical inverse problem, a result analogous to that proved by Hochstadt and Lieberman
in [46] is not available, see Refs. [47–51] for recent contributions concerning the Euler–Bernoulli model.
However, despite there is no proof of uniqueness of the reconstruction, applications of proposed technique
to steel beams with localized damages gave results that can be considered satisfactory from the practical point
of view.

Finally, the results of damage identification obtained via Fourier coefficient method and by using a standard
variational method based on frequency data for all the experimental models, both under axial or bending
vibrations, have been compared. The comparison shows a good agreement between the outcome of the two
methods in all the cases studied. This leads to the conjecture that, at least in simple beam models, updating the
stiffness distribution so that the distance between the first M measured and analytical frequencies is
minimized, is equivalent to finding the first M generalized Fourier coefficients of the stiffness variation caused
by the damage.
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Fig. 18. (a)–(f) Beam 1 (optimization method): identified bending stiffness EJ for damage D6 with M ¼ 2 (a), M ¼ 3 (b), M ¼ 4 (c),

M ¼ 5 (d), M ¼ 6 (e) and M ¼ 7 (f) frequencies. Actual damage location s ¼ 0:225m.
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As it emerges from the above considerations, there are several open problems associated with the proposed
diagnostic technique. Firstly, the convergence of the iterative procedure. Secondly, the connection with
general results of the inverse eigenvalue theory. Thirdly, the relationship between the Fourier coefficient
method and variational methods based on frequency measurements. All these problems require further
investigation.
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